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Final Report

Grant Title: NOVEL METHODS FOR ELECTROMAGNETIC SIMULATION AND DESIGN

Principal Investigator: Leslie Greengard

Grant # : FA9550-10-1-0180

Reporting Period: 5/1/2010 - 4/30/2016

Abstract: The goal of this project was to develop a new generation of fast, robust, and
accurate methods for solving the equations of electromagnetic scattering in realistic envi-
ronments involving complex geometry. During the six year performance period (including a
one-year no cost extension), we have made definitive progress in this direction. We have con-
structed new integral representations for scattering from perfect conductors and dielectrics
that work across the frequency spectrum, are immune from low-frequency breakdown, and
can be applied to surfaces of arbitrary genus. We have designed new quadrature methods
(QBX for “quadrature by expansion”) which are high-order, efficient and easy to use on
arbitrarily triangulated surfaces. The resulting discretized integral equations are compatible
with fast multipole-accelerated solvers and will form the basis for high fidelity modeling soft-
ware that can handle complicated, electrically large objects in a manner that is sufficiently
fast to allow design by simulation.

We also developed new methods for scattering from cavities in a perfectly conducting
half-space, for the simulation of layered and microstructured metamaterials, and for the
analysis of time-domain integral equations. Finally, we have demonstrated the utility of our
tools in predicting skin effects in MRI experiments on bulk metal samples.
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Scientific and Technical Activities and Findings

The ultimate goal of our research is to create a new generation of highly accurate methods
for solving the equations of electromagnetic scattering in realistic environments involving
complex geometry. To that end, we have developed, refined and implemented tools based
on new mathematical representations that overcome many of the obstacles encountered by
existing simulation techniques: ill-conditioning, low-frequency breakdown, and the inability
to handle multi-connected domains in a robust fashion. We have also developing robust,
high-order quadrature schemes for layer potentials defined on surfaces in three dimensions
and direct solvers that will permit the efficient precomputation of the scattering responses
of geometric substructures.

In our proposal, the targets were centered on:

• Modification of the FMM (fast multipole method) libraries to be able to handle the
full Maxwell system

• Creation of a user interface that is compatible with piecewise smooth surface discretiza-
tions

• Development of high order quadrature methods for smooth surfaces

• Development of fast direct solvers

• Development of methods for inverting the surface Laplacian

• Development of integral equation methods for multiply connected domains.

• Implementation of fast algorithms on parallel computing platforms workstations

• Implementation of quadratures for corner and edge singularities

• Development of application layers for EMI and EMC (electromagnetic interference and
compatibility).

• Initial development of fast direct solvers for the full Maxwell system and hybrid di-
rect/iterative solvers

Background: After assembling a team in Year 1 with the necessary expertise, we con-
structed FMM libraries for the full Maxwell system, created a user interface compatible with
both low and high order discretizations, and implemented the generalized Debye approach
of [4]. The mathematical details of that approach were summarized in previous reports, and
are omitted here.

Having completed the implementation, we made an important determination - namely
that first order accurate quadrature schemes (which are widely used) would not be sufficiently
accurate for reasonable mesh discretizations, so a major effort was initiated to design higher
order quadratures that could be implemented efficiently. To provide some context, we note
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that the classical formulation of the Maxwell equations (for scattering from a body Ω with
boundary Γ) makes use of the vector and scalar potentials A and φ, induced by a surface
current J [12, 16]:

E = iωA− 1

iω
∇φ, H =

1

µ
∇×A

with

A =

∫
Γ

g(x− y)J(y)dy, φ =
1

ε

∫
Γ

g(x− y) (∇ · J)(y)dy,

where

g(r) =
eik|r|

4π|r| .

Here, E and H are the electric and magnetic field, respectively, ε, µ are the permittivity
and permeability, and ω is the frequency of interest. Using this formalism, the evaluation of
the electromagnetic fields scattered by complicated objects in three dimensions requires the
evaluation of the singular and weakly singular integrals that define A and φ above. The lack
of efficient and high order rules for this purpose has been one of the fundamental obstacles
to the development of robust design tools. During years 2-5 of the project, we developed a
completely new approach to quadrature, which we refer to as QBX (quadrature by expansion)
[13, 6]. Using only smooth rules, we are now able to evaluate local expansions of the fields
induced by weakly singular, principal value and hypersingular integrals at a collection of
off-surface points, from which we extract the one-sided limit of the layer potentials with
surprising ease. A major effort over the past two years has been devoted to the development
of hybrid QBX/FMM software so that layer potentials in complex geometry can be evaluated
robustly, automatically and accurately with a simple user interface. We have completed a
prototype code in two dimensions [17] and are now embarking on building the full three-
dimensional version.

Leslie Greengard, New York University 2



Selected Accomplishments:

• We completed a fast solver for inverse obstacle scattering and demonstrated what we
believe are the most geometrically detailed, high frequency reconstructions to date (using
simulated data [3]). The method is based on fast solvers coupled with recursive linearization.
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Figure 1: Reconstruction of anaircraft-like object using recursive linearization and fast solvers (from [3]

• We began the development of a new approach to modeling scattering from layered
media. Given a point source located in an unbounded half-space or an infinitely extended
layer, Sommerfeld and others showed that Fourier analysis combined with contour inte-
gration provides a systematic and broadly effective approach, leading to what is generally
referred to as the Sommerfeld integral representation. When either the source or target is
at some distance from an infinite boundary, the number of degrees of freedom needed to
resolve the scattering response is very modest. When both are near an interface, however,
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the Sommerfeld integral involves a very large range of integration and its direct application
becomes unwieldy. Historically, three schemes have been employed to overcome this diffi-
culty: the method of images, contour deformation, and asymptotic methods of various kinds.
None of these methods make use of classical layer potentials in physical space, despite their
advantages in terms of adaptive resolution and high-order accuracy. The reason for this is
simple: layer potentials are impractical in layered media or half-space geometries since they
require the discretization of an infinite boundary. We developed a hybrid method which
combines layer potentials (physical-space) on a finite portion of the interface together with
a Sommerfeld-type (Fourier) correction. We have shown that our method is efficient and
rapidly convergent for arbitrarily located sources and targets, and show that the scheme
is particularly effective when solving scattering problems for objects which are close to the
half-space boundary or even embedded across a layered media interface.
•We extended the frequency domain Lorenz-Mie-Debye formalism for the Maxwell equa-

tions to the time-domain. We showed that the problem of scattering from a perfectly con-
ducting sphere can be reduced to the solution of two scalar wave equations one with Dirichlet
boundary conditions and the other with Robin boundary conditions. An explicit, stable, and
high-order numerical scheme was developed, based on our earlier treatment of the scalar case.
This new representation may provide some insight into transient electromagnetic phenom-
ena, and can also serve as a reference solution for general purpose time-domain software
packages [8, 9].
• We extended the development of our formulation for electromagnetic scattering from

perfect electric conductors to dielectrics. While our representation for the electric and mag-
netic fields is based on the standard vector and scalar potentials A, φ in the Lorenz gauge,
we established boundary conditions on the potentials themselves, rather than on the field
quantities. This has permitted the development (for the first time) of a second kind Fred-
holm integral that avoids low frequency breakdown and is insensitive to the genus of the
scatterer. The equations for the vector and scalar potentials are decoupled leading to what
we call the “decoupled potential integral equation” [20].
• We developed a method for simulating acoustic or electromagnetic scattering in two

dimensions from an infinite three-layer medium with thousands of wavelength-size dielectric
particles embedded in the middle layer. Such geometries are typical of microstructured
composite materials, and the evaluation of the scattered field requires a suitable fast solver
for either a single configuration or for a sequence of configurations as part of a design or
optimization process. We have developed an algorithm for problems of this type by combining
the Sommerfeld integral representation, high order integral equation discretization, the fast
multipole method and classical multiple scattering theory. [14].
• We developed new randomized methods for solving rank-deficient linear algebra prob-

lems [18]. This plays a role in our work on the magnetic field integral equation [5], but we
believe it is of much broader utility.
• We applied our prototype full Maxwell solver to a problem in magnetic resonance

imaing of bulk metals with experimental collaborators [7]. We showed that first principles
RF field calculations can accurately predict NMR spectra.
• We developed a fast direct solver for the simulation of electromagnetic scattering from
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an arbitrarily-shaped, large, empty cavity embedded in an infinite perfectly conducting half
space. The governing Maxwell equations are reformulated as a well-conditioned second kind
integral equation and the resulting linear system is solved in nearly linear time using a hier-
archical matrix factorization technique. We have demonstrated the power of the technique
with several numerical examples of complex cavity shapes over a wide range of frequencies
[15].
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Figure 2: (a) Real part of the scattered field for a pot shaped cavity with a normally incident
plane wave at wavenumber k=160. (b) The backscatter RCS in dB for the pot shaped cavity
at k=160

• The interaction of acoustic or electromagnetic waves with structured, periodic materials
is often complicated by the fact that the scattering geometry involves domains where multiple
media meet at a single point (triple-points). For illustration, consider the geometry of a
scattering problem shown in Fig. 3.

We developed a new integral equation method for the calculation of two-dimensional
scattering from periodic structures involving triple-points [10]. The combination of a robust
and high-order accurate integral representation and our previously developed fast direct
solver [11] permits the efficient simulation of scattering from fixed structures at multiple
angles of incidence (Fig. 4).
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Figure 3: A periodic array of scatterers on the surface of a layered medium. The Helmholtz
coefficient for the upper medium is k0, that for the trapezoidal-shaped scatterers is k1 and
that of the two layers beneath are k2 and k3, respectively. We assume that the lowest
interface (here between the k2 and k3 layers) is located at y = 0 and that the maximum
height of the scatterers is at y = y0. We also assume tha the unit cell is centered at x = 0.
The bottom layer is assumed to be infinite in extent.

Figure 4: Real part of total field with plane incident wave.

Leslie Greengard, New York University 6



References

[1] T. Askham and L. Greengard, Norm-preserving discretization of integral equations
for elliptic PDEs with internal layers I: the one-dimensional case, SIAM Rev., 56, 625–
641 (2014).

[2] J. Bremer and Z. Gimbutas, A Nystrom method for weakly singular integral oper-
ators on surfaces, J. Comput. Phys., 231, 4885–4903 (2012).

[3] C. Borges and L. Greengard, Inverse obstacle scattering in two dimensions with
multiple frequency data and multiple angles of incidence, SIAM J. Imaging Sci., 8,
280–298 (2015).

[4] C. L. Epstein, L. Greengard, and M. O’Neil, Debye Sources and the Numerical
Solution of the Time Harmonic Maxwell Equations, II, Comm. Pure Appl. Math., 66,
753–789 (2013).

[5] C. L. Epstein, Z. Gimbutas, L. Greengard, A. Kloeckner, and M. O’Neil A
Consistency Condition for the Vector Potential in Multiply-Connected Domains, IEEE
Trans. Magnetics, 49, 1072–1076 (2013).

[6] C. L. Epstein, A. Kloeckner, and L. Greengard, On the convergence of local
expansions of layer potentials, SIAM J. Numer. Anal., 51, 2660–2679 (2013).

[7] A. J. Ilotta, S. Chandrashekar, A. Kloeckner, H. J. Chang, N. M. Trease,
C. P. Grey, L. Greengard, A. Jerschow, Visualizing skin effects in conductors
with MRI: 7Li MRI experiments and calculations, J. Magnetic Resonance, 245, 143–149
(2014).

[8] L. Greengard, T. Hagstrom and S. Jiang, The solution of the scalar wave equa-
tion in the exterior of a sphere, J. Comput. Phys., 274, 191–207 (2014).

[9] L. Greengard, T. Hagstrom and S. Jiang, Extension of the Lorenz-Mie-Debye
method for electromagnetic scattering to the time-domain, J. Comput. Phys., 299, 98–
105 (2015).

[10] L. Greengard, K. L. Ho and J.-Y. Lee, A fast direct solver for scattering from
periodic structures with multiple material interfaces in two dimensions, J. Comput.
Phys., 258, 738–751 (2014).

[11] K. L. Ho and L. Greengard, A fast direct least squares algorithm for hierarchically
structured block separable matrices, SIAM J. Matrix Anal. Appl., 35, 725–748 (2014).

[12] J. D. Jackson, Classical Electrodynamics, 3rd ed., Wiley, New York, 1999.

[13] A. Kloeckner, A. Barnett, L. Greengard, and M. O’Neil, Quadrature by
Expansion: A New Method for the Evaluation of Layer Potentials, J. Comput. Phys.,
252, 332–349 (2013).

Leslie Greengard, New York University



[14] J. Lai, M. Kobayashi, and L. Greengard, A fast solver for multi-particle scatter-
ing in a layered medium, Optics Express, 22, 20481-20499 (2014).

[15] J. Lai, S. Ambikasaran, and L. Greengard, A fast direct solver for high frequency
scattering from a large cavity in two dimensions, SIAM J. Sci. Comput., 36, B887-B903
(2015).

[16] C.H. Papas, Theory of Electromagnetic Wave Propagation, Dover, New York, 1988.

[17] M. Rachh, A. Kloeckner, and M. O’Neil, Fast algorithms for Quadrature by
Expansion I: Globally valid expansions, arXiv:1602.05301, submitted

[18] J.Sifuentes, Z. Gimbutas, and L. Greengard, Randomized methods for rank-
deficient linear systems, Elec. Trans. Numer. Anal., 44, 177–188 (2015).

[19] F. Vico, Z. Gimbutas, L. Greengard and M. Ferrando-Bataller, Overcom-
ing Low-Frequency Breakdown of the Magnetic Field Integral Equation, IEEE Trans.
Antennas and Propagation, 61, 1285–1290 (2013).

[20] F. Vico, L. Greengard, Z. Gimbutas, and M. Ferrando, The decoupled po-
tential integral equation for time-harmonic electromagnetic scattering, arXiv:1404.0749,
Comm. Pure Appl. Math., to appear.

Leslie Greengard, New York University



Budget

There were no significant changes to the original budget. We were staffed by a mixture of
postdoctoral fellows, graduate students, visitors, and consultants.

Personnel

Senior research scientist Zydrunas Gimbutas accepted a position at NIST, where he is
continuing to work in part on electromagnetics with a focus on magnetic resonance imaging
applications. Postdoctoral fellows Andreas Kloeckner and Josef Sifuentes moved to
faculty positions at the University of Illinois, Urbana-Champaign, and Texas A&M, respec-
tively. Postdoctoral fellow Michael O’Neil began a faculty position at NYU in September,
2014. Postdoctoral fellow Siva Ambikasaran has taken a faculty position at the Indian
Institute of Science, Jun Lai has taken a faculty position at Zhejiang University in China,
and Carlos Borges is moving to the University of Texas, Austin for a second postdoctoral
fellowship. NYU students Manas Rachh and Travis Askham took a Gibbs Instructorship
at Yale and a postdoctoral fellowship at the University of Washington, respectively. Manas’
dissertation focused on the QBX (quadrature) project and Travis worked on volume integral
methods for variable coefficient media and problems with volume source terms.

At the University of Michigan, we supported one graduate student in Eric Michielssen’s
group, working on high frequency and time-domain scattering problems.

Our consultants have been Charles Epstein (U. Pennsylvania), Eric Michielssen (U.
Michigan), Shidong Jiang (NJIT), and Vladimir Rokhlin (Yale U.). Prof. Epstein has
worked on the analysis of the QBX quadrature scheme, integral equation theory, and the
design of a method for smoothing edges and corners with user-controlled precision. Prof.
Michielssen has concentrated on time-domain integral equation methods, and Prof. Rokhlin
has concentrated on fast direct solvers and corner singularities. Prof. Jiang worked on
time-domain methods.

Ways in which students and postdocs are contributing to the work
Students and postdocs were instrumental in virtually all aspects of this work. We devel-

oped a significantly different methodology compared with existing schemes, and made steady
progress on multiple aspects of tool development.
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Inventions or Patent Disclosures

None

Sabbatical or other professional development

Prof. Charles Epstein, Shidong Jiang, Eric Michielssen and Vladimir Rokhlin visited period-
ically to discuss work on the project and several group members have visited Yale University
to work with Prof. Rokhlin. One graduate student (Manas Rachh) is now a Gibbs Assistant
Professor at Yale, working with Prof. Rokhlin.

Awards and Honors

Leslie Greengard received the Wilbur Cross Medal from Yale University (2011), presented
the John von Neumann Lecture at the SIAM Annual Meeting (2014), and was elected to the
American Academy of Arts and Sciences (2016).

Accomplishments

• Implemented first solver for the Maxwell equations that is stable for all frequencies in
simply or multiply connected geometries.

• Discovered previously unknown boundary conditions for electromagnetics in multiply
connected domains that can be used to stabilize a variety of integral equation methods.

• Developed a simple and novel approach for constructing high order quadratures on
complicated surfaces in three dimensions.

• Developed an efficient method for simulating layered, microstructured materials

• Developed the first integral representation for electromagnetic scattering from perfect
conductors that is insensitive to the genus of the surface.

International Collaborations

Felipe Vico (Faculty, Universidad Politecnica de Valencia) visited our group on a regular
basis. Prof. June-Yub Lee (Ehwa Womans University, Seoul, Korea) was a sabbatical visitor
for an earlier project period and was partially supported by the NSSEFF grant. Motoki
Kobayashi visited from Sony, Japan during the 2012-2013 academic year.

Leslie Greengard, New York University



Interactions with DoD

Greengard served on the Air Force Studies Board, and has been in occasional contact with
the electromagnetics (CREATE) project at WPAFB (Drs. John D’Angelo, Ryan Chilton)
and with Dr. Ruth Pachter a Senior Scientist the Air Force Research Laboratory, Materials
and Manufacturing Directorate at WPAFB.

Group members (including the PI) attended the annual AFOSR Electromagnetics Con-
tractor’s Meetings. Greengard was invited to present lectures at the 2013, 2014, and 2015
meetings.

Leslie Greengard, New York University
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